Structure and properties of covalent compounds

1) Classify the following covalent compounds as molecular covalent or giant covalent based on their properties:

Property	Molecular covalent	Giant covalent
High melting and boiling point		
Insoluble in polar and non-		
polar solvents		
Liquids and gases under		
standard conditions		
Do not form discrete		
molecules		
Poor electrical conductors		
Soluble in polar or non-polar		
solvents		
Form discrete molecules		
Very hard substances		

Explain the following properties of covalent compou	unds	pounds	comp	lent co	covaler	of	properties	ollowing	the '	Explain	2)
---	------	--------	------	---------	---------	----	------------	----------	-------	---------	----

- a) Pentane (C₅H₁₂) is insoluble in water but soluble in hexane (C₆H₁₄).
- b) Diamond does not conduct electricity.
- c) CO₂ is a gas under standard conditions.
- d) SiO_2 has a melting point of $1600^{\circ}C$

Answers:

1)

Property	Molecular covalent	Giant covalent
High melting and boiling point		✓
Insoluble in polar and non- polar solvents		✓
Liquids and gases under standard conditions	✓	
Do not form discrete molecules		✓
Poor electrical conductors	✓	✓
Soluble in polar or non-polar solvents	√	
Form discrete molecules	✓	
Very hard substances		✓

2)

- a) Pentane and hexane, like all alkanes, are non-polar molecules. Non-polar molecules are soluble in non-polar solvents. Water is a polar molecule, therefore pentane is insoluble in water. The phrase 'like dissolves like' meaning that non-polar substances will dissolve in non-polar solvents and polar substances will dissolve in polar solvents, is a good way to determine the solubility of covalent compounds.
- b) Diamond has a giant covalent structure the atoms are bonded by covalent bonds therefore it does not have any free moving ions to conduct electricity.

- c) CO₂ has a molecular covalent structure, and is a non-polar molecule. There are weak London dispersion forces between the molecules therefore it is a gas under standard conditions.
- d) SiO₂ has a giant covalent structure with strong covalent bonds between atoms (the same as diamond), therefore it takes a lot energy to break the bonds between atoms, giving it a high melting point.